建立了一个二变量的和差分不等式,该不等式不仅右端和号外的项是非常数项,而且包含k项未知函数和非线性函数的复合函数;运用单调化技巧和强单调概念给出了不等式中未知函数的上界估计;所得结果可以用来估计Cheung WS(2006)和王五生(2008)所研究的不等式中的未知函数;最后,用研究不等式得到的结果研究二变量差分方程初边值问题的有界性、唯一性和连续依赖性.
In this paper, we establish a general form of sum-difference inequality in two variables, which contains both a nonconstant term outside the sums and k terms of nonlinear sums. We employ a technique of monotonization and use a property of stronger monotonicity to give an estimate for the unknown function. Our result enables us to solve those discrete inequalities considered in the work of Cheung W S (2006) and Wang W S (2008). Furthermore, we apply our result to a boundary value problem of a partial difference equation for boundedness, uniqueness and continuous dependence.