目的观察内源性大麻素(AEA)对血吸虫肝纤维化小鼠原代肝星状细胞(HSC)增殖及磷酸化-Erk(P-Erk)的影响,为大麻素在肝纤维化领域的研究提供理论依据。方法(1)腹部皮肤贴敷尾蚴建立血吸虫肝纤维化模型;(2)HE和Masson染色证实肝纤维化形成;(3)非连续密度梯度离心法提取原代HSC;(4)α平滑肌肌动蛋白(α-SMA)和结蛋白免疫荧光双重染色鉴定原代HSC,(5)二甲基偶氮唑盐法检测AEA对HSC增殖的影响;(6)Westernblot检测AEA对HSC磷酸化-Erk表达的影响。多个样本的均数比较采用单因素方差分析,若方差齐则采用LSD检验,若方差不齐采用DunnettT3检验。结果(1)成功建立血吸虫肝纤维化模型:HE染色显示嗜酸性肉芽肿形成,Masson染色显示出现围绕血管的胶原纤维沉积;(2)成功提取高纯度的原代HSC:纯度约为95%;(3)AEA能呈浓度依赖性地抑制HSC的增殖:5、10、20、40、60、80、100、120μmol/L组AEA对HSC的抑制率分别为5.14%士1.61%、10.34%±3.22%、14.1±3.98%、18.64%±3.67%、23.86%±3.06%、62.81%±7.75%、70.39%7.11%、72.31%±6.71%;(4)AEA能呈浓度和时间依赖性地增加P-Erk的表达:20、60、120μmol/L组的平均灰度值分别为39.90±4.61、43.45±0.91、52.91±1.97,与阴性对照组(19.21±1.60)相比,P值均〈0.05;在15、30min,1、3、6、12、24、48h的平均灰度值分别为85.05±15.80、103.41±11.89,118.02i12.24、109.17±15.69、100.86±10.55、71.70±12.87、34.62±14.85、22.84±11.73,与阴性对照组(19.21±1.60)相比,在15、30min,1、3、6、12h,6个时间点比较,P值均〈0.05。结论内源性大麻素AEA能通过激活Erk信号通路,抑制血吸虫肝纤维化小鼠原代HSC的增殖。
Objective To investigate the potential therapeutic properties of the endogenous cannabinoid N-arachidonic acid aminoethanols (anandamide, AEA) in liver fibrosis by observing its affects on proliferation of and expression of phosphorylated-Erk (pErk) in primary hepatic stellate cells (HSCs) from a mouse model of schistosome-induced liver fibrosis. Methods The schistosome-induced liver fibrosis model was established by attaching cercaria to the skin on the ventral side of the mouse and allowing infection to occur via direct penetration. Six weeks later, the model was confirmed by pathological analysis of liver, with Masson trichrome staining showing collagen fiber deposition around the blood vessels and hematoxylin-eosin staining showing eosinophilic granuloma formation. Primary HSCs were isolated by discontinuous density gradient centrifugation, confLrmed by immunofluorescence detection of double-staining for a-smooth muscle actin and desmin (95% purity), and cultured in the presence of absence of various concenwations of AEA. Proliferative ability was evaluated by MTT assay and the expression of pErk was observed by Western blotting. Results AEA treatment inhibited the proliferation of the primary HSCs in a concentration-dependent manner (AEA: 5 lamol/L, inhibition: 7.68%; 10 μmol/L, 11.65%; 20 μmol/L, 14.70%; 40 μmol/L, 15.07%; 60 μmol/L, 18.18%; 80 μmol/L, 20.26%; 100 μmol/L, 20.17%; 120 gmol/L, 29.24%). AEA treatment increased pERK expression in both a concentration-dependent manner (AEA: 20 μmol/L, average gray value: 39.90 ± 4.61; 60 μmol/L, 43.45 ± 0.91; 120 μmol/L, 52.91 ± 1.97; vs. negative control, all P 〈 0.05) and a time-dependent manner (time: 15 min, average gray value: 85.05 ± 15.80; 30 min, 103.41 ± 11.89; 1 h, 118.02 ± 12.24; 3h, 109.17 ± 15.69; 6h, 100.86± 10.55; 12h, 71.70± 12.87; 24h, 34.62 ± 14.85; 48h, 22.84± 11.73; vs. negative control, all except 48 h had P 〈 0.05). Conclusion AEA can suppress the proliferative capacity of prim