运用Gaussian 03程序包中的单双迭代三重激发耦合簇理论和相关一致五重基优化了AsH2的基态结构,并在优化结构的基础上计算了它的离解能和振动频率.结果表明:AsH2基态的平衡构型具有C2v对称性,键长RAs-H=0.1508nm,键角么∠AsH=91.2231°,离解能De(HAs—H)=2.8795eV,振动频率v1(a1)=1013.3361 cm^-1,v2(a1)=2225.1347cm^-1,v3(a1)=2233.7565cm^-1.这些结果与实验值较为相符.对H2的基态使用优选出的CO—pV6Z基组、对AsH的基态使用优选出的cc—pV5Z基组进行平衡几何与谐振频率的计算并进行单点能扫描,且将扫描结果拟合成了Murrell—Sorbie函数.与实验数据及其他理论结果的比较表明,本文关于AsH(X^3∑^-)自由基光谱常数(D0,De,Re,ωe,Be,αe和ωeχe)的计算结果达到了很高的精度并最为完整.采用多体项展式理论导出了AsH2(C2v,X^2B1)自由基的解析势能函数,其等值势能图准确再现了它的离解能和平衡结构特征.首次报导了AsH2(C2v,X^2B1)自由基对称伸缩振动等值势能图中存在的两个对称鞍点,对应于反应AsH+H→AsH2,势垒高度约0.1512×4.184kJ/mol.
The CCSD(T) theory in combination with the cc-pV5Z basis set is used to determine the equilibrium geometry, dissociation energy and vibrational frequencies of AsH2 ( C2v, X^2 B1 ) radical. By comparison, excellent agreement can be found between the present results and the experiments. The values obtained at present are of 0. 1508 nm for the equilibrium bond length RAs-H , 91. 2231° for the bond angle ∠ HASH, 2. 8795 eV for the dissociation energy De (HAs-H) and 1013. 3361 cm^- 1,2225. 1347 cm^-1 and 2233.7565 cm^-1 for the vibrational frequencies v1 ( a1 ), v2 ( a1 ) and v3 ( a1 ), respectively. The equilibrium geometry,harmonic frequency and potential energy curve of the AsH(X^3∑^-) radical are calculated at the CCSD(T)/cc-pV5Z level of theory. The ab initio results are fitted to the Murrell-Sorbie function with the least-square method. The spectroscopic parameters are in excellent agreement with the experiments. The analytic potential energy function of the AsH2 ( C2v, X^2 B1 ) radical is derived by using the many-body expansion theory. This function correctly describes the configuration and dissociation energy of the AsH2 (C2v, X^2 B1 ) radical. Two symmetrical saddle points have been found at (0. 160 nm, 0.296 nm) and (0.296 nm,0. 160 nm) ,respectively. And the barrier height is equal to 0. 1512 ×4. 184 kJ/mol.