位置:成果数据库 > 期刊 > 期刊详情页
反向建模方法在火电厂关键参数建模中的应用
  • ISSN号:1000-6761
  • 期刊名称:动力工程
  • 时间:0
  • 页码:1008-1012
  • 语言:中文
  • 分类:TK323[动力工程及工程热物理—热能工程]
  • 作者机构:[1]华北电力大学电站设备状态监测与控制教育部重点实验室,北京102206
  • 相关基金:国家自然科学基金资助项目(50776029)
  • 相关项目:复杂热力系统反向建模方法研究
中文摘要:

提出在火电厂关键参数建模中采用反向建模方法,以规避传统建模方法在实际应用中的建模难题.以超临界直流锅炉中间点温度为例,利用某600MW超临界机组的实际运行数据,采用反向建模方法建立了该参数的数学模型.建模算法选用最小二乘支持向量机(LS—SVM),应用粒子群算法(PSO)解决了LS—SVM参数寻优问题,并将PSO—LS—SVM所得模型与LS-SVM、偏最小二乘(PLS)以及BP神经网络所得模型进行了对比,结果表明:基于PSO—LS—SVM的中间点温度数学模型计算速度快、精度高,验证了反向建模思想的有效性和可行性.

英文摘要:

Reversed modeling method was proposed to avoid the difficulty of the traditional modeling method in power plant critical parameters modeling. Based on the actual operation data of a 600 MW supercrifical once-through boiler, mathematic model of the intermediate point temperature was constructed by reversed modeling method. The modeling algorithm was least square support vector machines (LS-SVM), and particle swarm optimization (PSO) was used to solve the LS-SVM optimal parameters question. A comparison has been made among models respectively obtained by PSO-LS-SVM, LS-SVM, partial least square(PLS), BP artificial neural networks(BP-ANN). Results show that with the intermediate point temperature model based on PSO-LS-SVM, faster and accurate calculation can be achieved, proving the reversed modeling method to be effective and feasible.

同期刊论文项目
期刊论文 10 会议论文 6
同项目期刊论文