位置:成果数据库 > 期刊 > 期刊详情页
灾变合作型协同进化遗传算法及其在Job Shop调度中的应用
  • ISSN号:1006-3080
  • 期刊名称:《华东理工大学学报:自然科学版》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]华东理工大学自动化研究所,上海200237
  • 相关基金:国家自然科学基金项目(60674075);上海市教委重点项目(05ZZ73)
中文摘要:

合作型协同进化遗传算法是多个子种群通过协作而共同进化的新型算法,常应用于多目标、大规模的优化问题。本文在合作型协同进化遗传算法的基础上,进一步模拟自然界中的灾变现象,在原先的算法中加入灾变算子,提出灾变合作型协同进化遗传算法,以防止出现不成熟收敛现象,并用经典的函数优化问题和Job Shop车间调度问题进行仿真实验,其结果验证了改进算法的优良性能.

英文摘要:

Cooperative Coevolutionary Genetic Algorithm (CCGA) is a new algorithm in which the sub-populations coevolve through the cooperation of interactional individuals. CCGA is often used in the multi-object problems and the optimizations with large dimensions. On the basis of CCGA,Cooperative Coevolutionary Genetic Algorithm with Catastrophe (CCGA-C) is proposed, in which a catastrophe operation is introduced to simulate the disaster in nature. This new algorithm effectively solves the premature convergence problem and improves the performance of optimization. The experiments of the classical functions optimizations and Job-Shop Scheduling Problem (JSP) optimizations are presented using CCGA-C. The results validate the efficiency of the new algorithm presented in this paper.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华东理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:华东理工大学
  • 主编:刘红来
  • 地址:上海梅陇路130号
  • 邮编:200237
  • 邮箱:ecustxbbzz@ecust.edu.cn
  • 电话:021-64252666
  • 国际标准刊号:ISSN:1006-3080
  • 国内统一刊号:ISSN:31-1691/TQ
  • 邮发代号:4-382
  • 获奖情况:
  • 2001年被国家新闻出版总署评为"中国期刊方阵科技...,2002年获"第五届全国石油和化工行业优秀期刊二等奖",2004年获"全国高校优秀科技期刊二等奖",2006年荣获"首届中国高校优秀科技期刊奖"以及"第...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10083