位置:成果数据库 > 期刊 > 期刊详情页
Research on PCA and KPCA Self-Fusion Based MSTAR SAR Automatic Target Recognition Algorithm
  • ISSN号:1674-862X
  • 期刊名称:《电子科技学刊:英文版》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP311.1[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]are with the Software School, Dalian University of Technology, Dalian 116621, China
  • 相关基金:Manuscript received March 8, 2012; revised May 17, 2012. The work was supported in part by the National Natural Science Foundation of China under Grant No. 61033012, No. 611003177, and No. 61070181, and Fundamental Research Funds for the Central Universities under Grant No. 1600-852016 and No. DUT 12.IR07.
中文摘要:

This paper proposes a PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. This algorithm combines the linear feature extracted from principal component analysis (PCA) and nonlinear feature extracted from kernel principal component analysis (KPCA) respectively, and then utilizes the adaptive feature fusion algorithm which is based on the weighted maximum margin criterion (WMMC) to fuse the features in order to achieve better performance. The linear regression classifier is used in the experiments. The experimental results indicate that the proposed self-fusion algorithm achieves higher recognition rate compared with the traditional PCA and KPCA feature fusion algorithms.

英文摘要:

This paper proposes a PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. This algorithm combines the linear feature extracted from principal component analysis (PCA) and nonlinear feature extracted from kernel principal component analysis (KPCA) respectively, and then utilizes the adaptive feature fusion algorithm which is based on the weighted maximum margin criterion (WMMC) to fuse the features in order to achieve better performance. The linear regression classifier is used in the experiments. The experimental results indicate that the proposed self-fusion algorithm achieves higher recognition rate compared with the traditional PCA and KPCA feature fusion algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子科技学刊:英文版》
  • 主管单位:
  • 主办单位:电子科技大学
  • 主编:周小佳
  • 地址:成都市建设北路
  • 邮编:610054
  • 邮箱:journal@westc.edu.cn
  • 电话:028-83200028
  • 国际标准刊号:ISSN:1674-862X
  • 国内统一刊号:ISSN:51-1724/TN
  • 邮发代号:62-268
  • 获奖情况:
  • 第二届中国高校特色科技期刊奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国科学文摘数据库,英国高分子图书馆,瑞典开放获取期刊指南
  • 被引量:6