针对一类有量测噪声的未知参数高阶线性系统设计了基于特征模型的卡尔曼滤波器,改进了由于传统卡尔曼滤波器在未知系统状态转移阵时应用的难题.在对高阶线性系统的自适应控制中,利用建立系统的特征模型构造状态转移阵,结合卡尔曼滤波的思想对系统输出进行滤波,使系统输出以及控制量的性能得到极大的改善.通过对一个未知参数的高阶线性系统仿真实验验证了此方法的有效性.
In this paper,a characteristic model based Kalman filter(CKF) is designed for high dimension linear systems with unknown parameters.The proposed approach overcomes difficuties in the application of traditional Kalman filters in unknown parameter systems.By building the characteristic model of the high dimension system,a state transfer matrix is constituted,and the CKF is establishedin combination with the algorithm of Kalman Filter.The CKF is used to filter the output signal with measurement noise,the performance of the adaptive control of high dimension systems is improved,and simulation results prove the capability of this method.