位置:成果数据库 > 期刊 > 期刊详情页
基于不对称贝叶斯学习的图像检索相关反馈算法研究
  • ISSN号:0469-5097
  • 期刊名称:南京大学学报(自然科学版)
  • 时间:0
  • 页码:604-612
  • 语言:中文
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]大连海事大学信息科学技术学院,大连116026
  • 相关基金:国家自然科学基金(60473115,60773084,60603023),教育部博士点基金(20070151009)
  • 相关项目:分析挖掘冠心病中医诊疗临床规律的智能技术研究
中文摘要:

基于贝叶斯(Bayesian)理论的相关反馈技术是可有效提高图像检索性能的重要手段之一。然而,当前大多数的Bayesian反馈算法普遍受到小样本问题和训练样本不对称问题的制约。本文提出一种新的相关反馈算法,该算法将查询点移动(query point movement,QPM)技术嵌入Bayesian框架中,并采用不对称的学习策略处理正、负反馈信息,故而称之为不对称Bayesian学习(asymmetry Bayesian learning,ABL).对于正例样本,该算法同时考虑用户提供的正、负反馈信息,并借助QPM技术估计相关语义类图像的概率分布.对于负例样本,采用一种半监督学习机制以应对负例样本稀缺问题.首先,通过随机采样从数据库中选取一组无标记图像,然后,利用QPM技术对其进行数据审计.最后,将审计后的无标记图像作为额外的负例样本,并与用户标记的负反馈信息一起用于估计不相关语义类图像的概率分布.仿真实验及对比结果表明,不对称Bayesian学习策略可显著提高相关反馈的效率,且本文算法的检索性能明显优于当前其它的相关反馈算法.

英文摘要:

With the explosive growth in digital image records and the rapid increase of computer power, content based image retrieval (CBIR) has become a very active research field during the past years. One of the fundamental problems in CBIR is the gap between the low-level visual features and the high-level semantic concepts. Relevance feedback (RF), as a powerful tool for bridging the gap, is introduced into CBIR. Among many approaches, Bayesian learning (BL) plays a key role for boosting RF performance. However, most BL- based RF methods are challenged hy the small size example collection and the asymmetric distributions between the positive and the negative examples. To overcome these drawbacks indwelled in current BL-based RF methods, this paper presents a novel scheme that embeds the query point movement (QPM) technique into the Bayesian framework for improving RF performance. In particular, we use an asymmetric learning methodology to determine the parameters of the Bayesianlearner, which is termed as asymmetric Bayesian learning (ABL). Concretely, for the positive examples, QPM is applied to estimate the distribution of the relevant semantic class by exploiting the positive feedbacks in conjunction with the negative ones; for the negative ones, a semi-supervised learning mechanism is used to tackle the scarcity of negative examples. In detail, a random subset of the unlabeled images is firstly selected as candidate negative examples, and then a QPM-based data editing method, proposed in this paper, is used to eliminate the problematic data mixed in the selected examples. Finally, the edited unlabeled images are regarded as additional negative examples which are helpful to estimate the distribution of the irrelevant class. Experimental results show that using asymmetric Bayesian learning strategy in RF is beneficial, and the proposed method achieves better performance than other existing approaches.

同期刊论文项目
期刊论文 30 会议论文 14 获奖 1
期刊论文 36 会议论文 8 专利 1
同项目期刊论文
期刊信息
  • 《南京大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:南京大学
  • 主编:龚昌德
  • 地址:南京汉口路22号南京大学(自然科学版)编辑部
  • 邮编:210093
  • 邮箱:xbnse@netra.nju.edu.cn
  • 电话:025-83592704
  • 国际标准刊号:ISSN:0469-5097
  • 国内统一刊号:ISSN:32-1169/N
  • 邮发代号:28-25
  • 获奖情况:
  • 中国自然科学核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9316