新膜为在多孔的媒介为液体流动建模的有限元素方法被介绍以便快速并且精确地模仿在土木工程使用的 geo 膜织物。它基于不连续的有限元素理论,和罐头容易被结合正常 Galerkin 有限元素方法。基于浸透的渗出物方程,膜元素方法的元素系数矩阵被导出,并且为在一个全球坐标系统和一个本地坐标系统之间的膜元素的一种几何变换关系被获得。为膜元素的液体流动传导性的决心的一个方法被介绍。这个方法为在不连续的有限元素理论决定不连续的参数提供一个基础。关于一座大楼的基础的一个反渗出物问题被联合膜分析有正常 Galerkin 有限元素方法的有限元素方法。分析结果表明膜的用途和优势在多孔的媒介的液体流动分析的有限元素方法。
A new membrane finite element method for modeling fluid flow in a porous medium is presented in order to quickly and accurately simulate the geo-membrane fabric used in civil engineering. It is based on discontinuous finite element theory, and can be easily coupled with the normal Galerkin finite element method. Based on the saturated seepage equation, the element coefficient matrix of the membrane element method is derived, and a geometric transform relation for the membrane element between a global coordinate system and a local coordinate system is obtained. A method for the determination of the fluid flux conductivity of the membrane element is presented. This method provides a basis for determining discontinuous parameters in discontinuous finite element theory. An anti-seepage problem regarding the foundation of a building is analyzed by coupling the membrane finite element method with the normal Galerkin finite element method. The analysis results demonstrate the utility and superiority of the membrane finite element method in fluid flow analysis of a porous medium.