位置:成果数据库 > 期刊 > 期刊详情页
D-S理论与神经网络相结合的信息融合模型研究
  • ISSN号:1004-1699
  • 期刊名称:《传感技术学报》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]西北工业大学自动化学院,西安710072
  • 相关基金:国家自然科学基金项目资助(60574034)
中文摘要:

针对大噪声环境下信息融合效果差的问题,提出了一种基于D-S证据理论与神经网络技术的信息融合方法,该方法综合了证据理论在处理不确定信息方面的优点和神经网络在数值逼近上的长处,一方面利用神经网络和冲突证据处理算法获取基本概率赋值,另一方面通过证据理论使神经网络的结构变得透明.初步仿真结果表明,该方法有效地解决了不确定性信息的误识别问题.

英文摘要:

Under the circumstance of great noise in information fusion system, the fusion effect is poor. In view of this problem, thus a method of information processing is proposed based on the combination of D-S evidence theory and neural network. Evidence theory has the advantage of processing uncertain information while the neural network is ascendant in numerical approximation. In the method, by integrating both advantages, the basic probability evaluation can be obtained using neural network and the processing arithmetic of conflict evidence. Moreover, the architecture of neural network becomes apparent according to evidence theory. Simulation shows that the recognition rate of uncertain information is improved.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《传感技术学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:东南大学 中国微米纳米技术学会
  • 主编:黄庆安
  • 地址:南京市四牌楼2号
  • 邮编:210096
  • 邮箱:dzcg-bjb@163.com
  • 电话:025-83794925
  • 国际标准刊号:ISSN:1004-1699
  • 国内统一刊号:ISSN:32-1322/TN
  • 邮发代号:28-366
  • 获奖情况:
  • 2011-2012年获中国科技论文在线优秀期刊一等奖,2012年获第四届中国高校优秀科技期刊奖,2011年获中国精品科技期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:18030