位置:成果数据库 > 期刊 > 期刊详情页
基于分层选择策略的主动学习分词方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TP311.1[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京邮电大学计算机学院,南京210003
  • 相关基金:国家自然科学基金资助项目(61302157); 国家教育部人文社会科学研究青年基金资助项目(12YJC870008); 江苏省教育厅高校哲学社会科学基金资助项目(2013SJB870004); 江苏省社科研究文化精品课题(12SWC-030)
中文摘要:

为了克服训练样本不足、获取大量标注样本费时费力的问题,在基于不确定选择策略的基础上,提出了一种新的基于分层选择策略的主动学习方法。使用新提出的选择策略从大量无标注的样本中选择最有价值的样例,进行标注后加入到训练集中来训练分词器。最后在PKU、MSR和山西大学数据集上进行测试,并与不确定选择策略进行比较。结果表明提出的分层选择策略在相同大小的训练语料下可以获得更高的分词准确率,同时还降低了人工标注的代价。

英文摘要:

To solve the problems of lacking of training samples and accessing a large number of labeled samples laborious,this paper proposed one fresh active learning segmentation method based on stratified sampling strategy. The method used the stratified sampling strategy to select the most useful instances to annotate from unlabeled samples. Next,it put the annotated instances into the labeled set and then trained the segmenter using the set. Finally the method tested in PKU,MSR and Shanxi university corpora and compared with the uncertainty sampling strategy. The experimental result shows that the stratified selection strategy can improve the accuracy of segmentation in the same size training corpus,at the same time reduce the cost of manual annotation effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049