位置:成果数据库 > 期刊 > 期刊详情页
一种采用社团信息的链接预测方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:南京邮电大学计算机学院,南京210003
  • 相关基金:国家自然科学基金青年基金资助项目(61100135,61302157,61302158)
中文摘要:

链接预测研究如何利用网络中已有的信息预测可能存在的关系链接,目前已成为数据挖掘领域的热点研究问题之一。社会网络中普遍存在社团结构,社团对链接的形成有重要的影响,但在大多数链接预测方法中未得到深入研究。针对这一现象提出一种新的链接预测方法,采用社团信息改进节点对样本的描述,并在监督学习框架中学习和预测。在现实数据集Faeebook和ACF中的实验结果表明,加入社团信息的链接预测方法获得了更高的准确率。

英文摘要:

Link prediction studies how to use the existing information in the network to predict the potential relationship between unlinked nodes, and it has been one of the hottest research problems in data mining. Community structures exist prevalently in social networks, they have significant impact on forming links. However, people have not thoroughly studied this link prediction problem. To deal with the above-mentioned phenomenon, this paper proposed a novel link prediction method. It not only improved the structural description of node pairs in network by adding community information, but also used supervised learning method to proceed link prediction. Experimental results on Facebook and ACF datasets show that it can raise the accuracy of link prediction by using community information in the network.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049