位置:成果数据库 > 期刊 > 期刊详情页
不确定奇异分数阶系统的正则和鲁棒稳定
  • ISSN号:0253-2778
  • 期刊名称:《中国科学技术大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:中国科学技术大学自动化系,合肥080602
  • 相关基金:国家高技术研究发展计划(863)(2014AA06A503); 国家自然科学基金(61422307)
中文摘要:

文本分类中的高维数据和噪声一直是影响文本分类准确率的主要因素,特征选择和特征提取是降维和去噪的主要手段.本文提出根据词的类间概率分布方差和文档分布方差改进TF-IDF的特征选择方法(VAR-TF-IDF),调整Word2vec中的CBOW+HS词向量训练框架,用特征词词向量的叠加作为文本的特征向量,有效地提高了文本分类的准确率和召回率.实验算例证明了所提方案的有效性.

英文摘要:

High dimensional data and noise have always been the major factors affecting the accuracy of text classification. Feature selection and feature extraction is the main methods of dimensionality reduction and denoising. In this paper, the words probability distribution variance and document distribution variance is used to improve the TF-IDF feature selection method(VAR-TF-IDF). After selecting good features, it tuned the CBOW+HS frame work of word2 vec. The superposition of word embedding of the selected words is used as eigenvector which could improve accuracy of text classification. Experiment shows the proposed method is effective.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国科学技术大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学技术大学
  • 主编:何多慧
  • 地址:安徽省合肥市金寨路96号
  • 邮编:230026
  • 邮箱:JUST@USTC.EDU.CN
  • 电话:0551-63601961 63607694
  • 国际标准刊号:ISSN:0253-2778
  • 国内统一刊号:ISSN:34-1054/N
  • 邮发代号:26-31
  • 获奖情况:
  • 1999年,全国优秀高等学校自然科学学报及教育部优...,2001年,安徽省1999-2001年度优秀科技期刊一等奖,2002年,第三届华东地区优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:8237