在变丑量子化, Wigner 函数服从的静电干扰功能 *-genvalue 方程,它在量力学的 Hilbert 空格操作符形式主义等价于时间无关的 Schrödinger 方程。这个等价与形式 =(1/2 ) 主要为 Hamiltonian 被证明 2+V()[D。Fairlie, Proc。Camb。菲尔。Soc。60 (1964 ) 581 ] 。在这笔记,我们概括这个证明到很一般的 Hamiltonian (,) 并且给例子支持它。
In deformation quantization, static Wigner functions obey functional ,-genvalue equation, which is equivalent to time-independent Schrodinger equation in Hilbert space operator formalism of quantum mechanics. This equivalence is proved mostly for Hamiltonian with form H^ = (1/2)p^2 + V(x^) [D. Fairlie, Proc. Camb. Phil. Soc. 60 (1964) 581]. In this note we generalize this proof to a very general Hamiltonian H^(x^,p^) and give examples to support it.