教育数据挖掘(educational data mining,简称EDM)技术运用教育学、计算机科学、心理学和统计学等多个学科的理论和技术来解决教育研究与教学实践中的问题.在大数据时代背景下,EDM研究将迎来新的转折点.为方便读者了解EDM的研究进展或从事相关研究和实践,首先介绍EDM研究的概貌、特点和发展历程,然后重点介绍和分析了EDM近年来的研究成果.在成果介绍部分,选取的研究成果大部分发表于2013年以后,包括以往较少涉及的几种新型教育技术.在成果分析部分,对近年来的典型案例作了分类、统计和对比分析,对EDM研究的特点、不足及发展趋势进行了归纳和预测.最后讨论了大数据时代下EDM面临的机遇和挑战.
Educational data mining (EDM) focuses on solving theoretical and practical problems in education by applying principles and techniques from educational science, computer science, psychology, and statistics. It is believed that EDM will become more mature and promising in the Age of Big Data. This paper aims to help readers to understand or engage EDM research. First, the basic concepts, characteristics and research history of EDM are introduced. Then some latest results of EDM are presented and analyzed. Most results were published in 2013 and later, including some studies on several educational techniques that were rarely investigated before. Those results are also analyzed via classification, statistics and comparison, and based on which strength and weakness of EDM is discussed. Finally, opportunities and challenges facing EDM are discussed.