考虑一类非线性粘弹性波动方程uu-κ0△u+∫0g(t-s)div[a(x)△u(s)]ds+b(x)h(ut)=f(u),(x,t)∈Ω×(0,∞)的初边值问题.在对函数g,h和f比较弱的假设下,通过引入简单的Lyapunov泛函和精确先验估计证明了能量一致衰减.
In this paper we consider a class of nonlinear viscoelastic wave equation uu-κ0△u+∫0g(t-s)div[a(x)△u(s)]ds+b(x)h(ut)=f(u),(x,t)∈Ω×(0,∞)with initial-boundary conditions. Under weaker assumptions on the functions g,h and f, the uniform energy decay are proved by introducing very simple Lyapunov functional and precise priori estimates.