位置:成果数据库 > 期刊 > 期刊详情页
基于非敏感信息分析的轨迹数据隐私保护发布
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP309.2[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]安徽师范大学数学计算机科学学院,安徽芜湖241003, [2]安徽师范大学网络与信息安全工程技术研究中心,安徽芜湖241003
  • 相关基金:国家自然科学基金资助项目(61370050,61672039);安徽省自然科学基金资助项目(1508085QF134).
中文摘要:

针对轨迹数据发布时轨迹和非敏感信息引起的隐私泄露问题,提出一种基于非敏感信息分析的轨迹数据隐私保护发布算法。首先,分析轨迹和非敏感信息的关联性构建轨迹隐私泄露判定模型,得到最小违反序列元组(MVS),然后借鉴公共子序列的思想,在消除MVS带来的隐私泄露风险时,选择MVS中对轨迹数据损失最小的时序序列作为抑制对象,从而生成具有隐私能力和低数据损失率的匿名轨迹数据集。仿真实验结果表明,与LKC—Local算法和Trad.Local算法相比,在序列长度为3的情况下,该算法平均实例损失率分别降低了6%和30%,平均最大频繁序列(MFS)损失率分别降低了7%和60%,因此所提算法能够有效用于提高推荐服务质量。

英文摘要:

Focusing on the issue of privacy disclosure between trajectory and non-sensitive information, a trajectory privacy preserving algorithm based on non-sensitive information analysis was proposed. Firstly, the correlation between trajectory and non-sensitive information was analyzed to build trajectory privacy disclosure decision model, and the Minimal Violating Sequence tuple (MVS) was gotten. Secondly, using common subsequences, the doublets with the minimal loss of trajectory data in MVS were selected as the suppression objects when removing the privacy risks caused by MVS, then the anonymized trajectory dataset with privacy and low data loss was obtained. In the comparison experiments with LKC-Local algorithm and Trad-Local algorithm, when the sequence length is 3, the average instance loss of the proposed algorithm is decreased by about 6% and 30% respectively, and the average MFS ( Maximal Frequent Sequence) loss is decreased by about 7% and 60% respectively. The experimental results verify that the proposed algorithm can effectively improve the quality of recommend service.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679