在对滚动轴承原始故障信号完成特征提取与特征筛选的基础上,利用BP、RBF以及SVM三种网络模型对筛选完的特征量进行特征级融合[1];针对单一的网络模型的不确定性,通过隶属度熵值权重法确定了三种网络模型的不确定度[2],并引入D-S证据理论[3],对三种网络的计算结果进行决策级融合[4](以滚动轴承外圈故障为例),以提高对滚动轴承故障诊断精度。