位置:成果数据库 > 期刊 > 期刊详情页
一种嵌入局部信息的快速KFCM聚类分割算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]School of Microelectronics, Xidian University, Xi'an 710071, China, [2]Xi'an Institute of Optics and Precision Mechanics ofCAS, Xi'an 710119, China
  • 相关基金:Sponsored by the National Natural Science Foundation of China (Grant No. 61136002 ), Key Project of Chinese Ministry of Education (Grant No. 211180 ), and Shannxi Provincial Industrial and Technological Project( Grant No. 2011 K06-47 ).
中文摘要:

One crucial issue in particle filtering is the selection of proposal distribution. Good proposal can effectively alleviate particle degeneracy and thus improve filtering accuracy. In this paper, we propose a new type of proposal distribution for particle filter, called as R-IEKF proposal. By combining iterated extended kalman filter with Rauch-Tung-Striebel optimal smoother, the new proposal integrates the latest observation into system and approximates the true posterior distribution reasonably well, hence generating more precise and stable particles against measurement noise. The simulation results indicate that the improved particle filter with R-IEKF proposal prevails over PF-EKF and UPF both in tracking accuracy and filtering stability. Consequently, PF-RIEKF is a competitive choice in noisy measurement environment.

英文摘要:

One crucial issue in particle filtering is the selection of proposal distribution. Good proposal can ef- fectively alleviate particle degeneracy and thus improve filtering accuracy. In this paper, we propose a new type of proposal distribution for particle filter, called as R-IEKF proposal. By combining iterated extended kalman filter with Rauch-Tung-Striebel optimal smoother, the new proposal integrates the latest observation into system and approximates the true posterior distribution reasonably well, hence generating more precise and stable parti- cles against measurement noise. The simulation results indicate that the improved particle filter with R-IEKF proposal prevails over PF-EKF and UPF both in tracking accuracy and filtering stability. Consequently, PF- RIEKF is a competitive choice in noisy measurement environment.

同期刊论文项目
期刊论文 23 会议论文 3
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887