位置:成果数据库 > 期刊 > 期刊详情页
加性噪声下增广容积卡尔曼滤波及其目标跟踪应用
  • ISSN号:1000-386X
  • 期刊名称:《计算机应用与软件》
  • 分类:TP3[自动化与计算机技术—计算机科学与技术]
  • 作者机构:中国科学院重庆绿色智能技术研究院,重庆400714
  • 相关基金:国家自然科学基金项目(61202131);中国科学院“西部之光”项目以及青年创新促进会项目(2015315).
作者: 刘江, 叶松庆
中文摘要:

传统容积卡尔曼滤波(CKF)有良好的滤波精度和较低的计算复杂度,使其广泛被应用于目标跟踪系统。但在高维非线性和波动性大的目标跟踪系统中,3阶和高阶CKF分别存在滤波精度不足和稳定性低的问题。为提高CKF的滤波精度并保证稳定性,讨论和给出加性噪声下的增广容积卡尔曼滤波(ACKF)。在仿真中,将CKF、UKF和ACKF应用于5维高非线性目标跟踪,并分析比较三者的目标跟踪性能。研究结果表明,在高维非线性目标跟踪系统中,3阶ACKF可以获得更好目标跟踪精度和稳定性,以及可接受的计算复杂度。

英文摘要:

Since the cubature Kalman filter (CKF) provides a good accuracy with low computational complexity, it is wildly applied in estimation and tracking systems. But for a tracking system involving high dimensionality and acute nonlinearity, 3-degree CKF and high-degree CKF encounter low accuracy and instability problems, respectively. To improve the the performance, augmented cubature Kalman filter for additive noise is discussed. In the simulation, CKF, UKF and ACKF are applied to 5-dimensional targets tracking system. Besides, their performances including accuracy, stability and complexity are compared by RMSEs. The results show that 3-degree ACKF can obtain better tracking accuracy and stability with acceptable computational complexity than UKF, 3-degree CKF and 5-degree CKF in highly nonlinear and dimensional systems.

同期刊论文项目
期刊论文 5 会议论文 3
同项目期刊论文
期刊信息
  • 《计算机应用与软件》
  • 北大核心期刊(2011版)
  • 主管单位:上海科学院
  • 主办单位:上海市计算技术研究所 上海计算机软件技术开发中心
  • 主编:朱三元
  • 地址:上海市愚园路546号
  • 邮编:200040
  • 邮箱:cas@sict.stc.sh.cn
  • 电话:021-62254715 62520070-505
  • 国际标准刊号:ISSN:1000-386X
  • 国内统一刊号:ISSN:31-1260/TP
  • 邮发代号:4-379
  • 获奖情况:
  • 全国计算机类中文核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2011版),中国北大核心期刊(2000版)
  • 被引量:27463