结合Fichera-Oleinik理论,研究一类双重退化渗流方程ut=div(ρ^α u^m),(x,t)∈QT=Ω×(0,T)的可解性问题.其中Ω是R^N中的有界区域,边界Ω充分光滑,ρ(x)=dist(x,Ω),m〉1,α≥2,u0非负,u0∈L^m+1(Ω),ρ^α/2 u0^m∈L∞(0,T;L^2(Ω)).借助于一般粘性解的定义,给出了该渗流方程存在具有齐次边界条件的弱解的定义,并证明其存在性。
By Fichera-Oleinik theory, the paper studies solvability of the singular double degenerate filtration equation ut=div(ρ^α u^m),(x,t)∈QT=Ω×(0,T), where Ω is a bounded domain in R^N with appropriately smooth boundary Ω p(x) = dist(x,Ω) , m 〉 1 , a ≥ 2, uo ≥ 0, uo ∈ L^m+1 (∈), p^a/2 u0^m ∈ L∞ (0,T;L^2(Ω)). By viscous solution theory, the paper gives the definition of the weak solution to the equation with homogeneous boundary value, then proves its existence.