考虑带对流项的多孔介质方程:ut=div(ρ^α▽um)+i=1∑N bi(u^m)/xi,(x,t)∈QT=Ω×(0,T).假设对任意的i∈{1,2,…,N},bi(s)是C1函数,且存在常数β,c,使得bi(s)≤c|s|^1+β,|b′i(s)|≤c|s|^β.应用抛物正则化方法,得到了该方程在条件0〈α〈1时初边值问题解的存在唯一性.
The authors studied diffusion convection equation with boundary degeneracy ut=div(ρ^α▽um)+i=1∑N bi(u^m)/xi,(x,t)∈QT=Ω×(0,T).,for any i∈{1,2,…,N},b i(s)is a C1 function,there are constantsβ,c such that bi(s)≤c|s|^1+β,|b′i(s)|≤c|s|^β.If 0〈α〈1,the existence and the uniqueness of the solutions of the initial-boundary value problem to the equation were obtained by the parabolic regularized method.