位置:成果数据库 > 期刊 > 期刊详情页
一类动力系统的极限环及其数目和分布
  • ISSN号:0529-6579
  • 期刊名称:《中山大学学报:自然科学版》
  • 时间:0
  • 分类:O322[理学—一般力学与力学基础;理学—力学]
  • 作者机构:[1]中山大学工学院,广东广州510275
  • 相关基金:国家自然科学基金资助项目(10772203)
作者: 黄赪彪[1]
中文摘要:

用摄动增量法求解一类平面二次动力系统,指出系统在有限域内只有环绕原点的四个环,幅值较小的三个是极限环(分别是稳定、不稳定和稳定),较大的是同宿环;标出无切曲线,以及两条渐近曲线的近似位置;计算结果表明,摄动增量法的近似极限环与数值积分法吻合良好。由三个极限环的速率曲线无公共交点这一事实,进一步具体说明平面多项式微分系统极限环的数目(即Hilbter第16问题第二部分)不能简单地由代数方法解决。

英文摘要:

A plane quadratic dynamical system is solved by using the perturbation-incremental method.It is shown that there are only four cycles in the finite field of this system.Three of smaller amplitudes are the limit cycles(stability,instability and stability respectively) and the larger one is the homoclinic cycle.The un-tangent curve and the two gradual curves are plotted.The computation result showed that the perturbation-incremental method is in good agreement compared with the numerical integral method.It is shown further that the number of the limit cycles of the planar polynomial differential systems(the second part of Hilbter's 16 problems) can't be simply solved with using the algebra from the fact that there isn't the common point of intersection of the rate curves of the three limit cycles.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中山大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:中山大学
  • 主编:王建华
  • 地址:广州市新港西路135号
  • 邮编:510275
  • 邮箱:xuebaozr@mail.sysn.edu.cn
  • 电话:020-84111990
  • 国际标准刊号:ISSN:0529-6579
  • 国内统一刊号:ISSN:44-1241/N
  • 邮发代号:46-15
  • 获奖情况:
  • 全国优秀高等学校自然科学学报及教育部优秀科技期...,广东省优秀科学技术期刊一等奖,《中文核心期刊要目总览》综合性科技类核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),英国农业与生物科学研究中心文摘,德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:18509