位置:成果数据库 > 期刊 > 期刊详情页
鲁棒主元分析在掌纹识别中的应用
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]沈阳化工大学信息工程学院,沈阳110142
  • 相关基金:国家自然科学基金(No.61174119).
中文摘要:

为了对存在异常值的图像构建低维线性子空间的描述,提出用鲁棒主元分析(RPCA)的新方法进行掌纹识别。运用图像下抽样方法降低掌纹空间的维数,在低维图像上应用RPCA提取低维的投影向量,然后将训练图像和待识别图像向投影向量上投影得到鲁棒主元特征,计算特征向量间的余弦距离进行掌纹匹配。运用PolyU掌纹图像库进行测试,结果表明,与主元分析(PCA)、独立元分析(ICA)和核主元分析(KPcA)相比,RPCA算法的识别率最高为99%,特征提取和匹配总时间0.032S,满足了实时系统的要求。

英文摘要:

In order to construct low-dimensional linear-subspace representations from the data containing outliers, a new palmprint recognition method based on Robust Principal Component Analysis (RPCA) is proposed. The image down-sample is firstly used to reduce palmprint space dimensionality. The RPCA is applied to extract the low projec- tion vectors. Then the training images and test images are projected onto the projection vectors to get the robust prin- cipal component feature vectors. Finally, the cosine distance between two feature vectors is calculated to match palmprint. The new algorithm is tested in PolyU plmprint database. The results show that compared with Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Kernel Principal Component Analysis (KPCA), the recognition rate of the new RPCA algorithm is the highest up to 99%, and all the time for feature extraction and matching is 0.032 s, so it meets the real-time system specification.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887