采用Fe(NO3)3对中间相炭微球进行高温催化石墨化处理,制备锂离子电池负极材料。采用Raman光谱、X-射线衍射法、恒电流充放电等对样品进行测试和表征。结果表明,经催化石墨化处理的MCMB内部石墨微晶结构未发生明显变化,而表面碳层的石墨化程度提高;处理后的MCMB的首次可逆放电比容量由直接石墨化MCMB的333.8mAh/g提高到362.3mAh/g,第50次循环放电比容量与首次循环放电比容量的比值从92.4%提高到97.7%。
Mesocarbon microbead (MCMB) was graphitized with the existence of Fe(NO3)3 to prepare anode materials of Li-ion batteries. The structure and electrochemical properties of the sample were characterized by Raman spectroscopy, XRD analysis and charge-discharge measurements. It is found that the microcrystalline structure of MCMB after catalytic graphitization is not changed obviously, but the graphitization degree of the carbon layer on the surface of MCMB is improved. The first reversible capacity of the sample as anode materials for Li-ion batteries is improved to 362.3 mAh/g from 333.8 mAh/g of the sample without Fe(NO3)3, and the capacitance ratio of 50th cycles to the initial is improved to 97.7% from 92.4%.