位置:成果数据库 > 期刊 > 期刊详情页
基于可见-近红外光谱的可乐品牌鉴别方法研究
  • ISSN号:1000-0593
  • 期刊名称:《光谱学与光谱分析》
  • 时间:0
  • 分类:TS275.3[轻工技术与工程—农产品加工及贮藏工程;轻工技术与工程—食品科学与工程]
  • 作者机构:[1]浙江大学生物系统工程与食品科学学院,浙江杭州310029
  • 相关基金:国家科技支撑项目(2006BAD10A04,2006BADI0A09)、国家自然科学基金资助项目(30600371)和高等学校优秀青年教师教学科研奖励计划(02411)资助
中文摘要:

提出了一种采用可见-近红外光谱分析技术快速鉴别可乐品牌的新方法。采用美国ASD公司的便携式光谱仪对三种不同品牌的可乐进行光谱分析,各获取55个样本数据。将样本随机分成150个建模样本和15个预测样本,采用平均平滑法和标准归一化方法对样本数据进行预处理,再用主成分分析法对光谱数据进行聚类分析并获得各主成分数据。将建模样本的主成分数据作为BP网络的输入变量,可乐品牌作为输出变量,建立三层人工神经网络鉴别模型,并用模型对15个预测样本进行预测。结果表明,预测准确率为100%,实现了可乐品牌快速、准确的鉴别。

英文摘要:

A new method was developed to fast discriminate the brands of cola by means of visual-near infrared spectroscopy (NIRS). Three different brands of cola (Coca-cola, Pepsi-cola and Future-cola) were analyzed using a handheld near infrared spectrometer produced by ASD Company. Fifty five samples were used for each brand of cola, and they were divided randomly into a group of 150 samples as calibrated samples and one of 15 samples as prediction samples. The samples data were pretreated using average smoothing and standard normal variable method, and then the pretreated spectra data were analyzed using principal component analysis (PCA). The principal component data of calibrated samples were used as the inputs of back-propagation artificial neural network (ANN-BP), while the values of cola brands used as the outputs of ANN-BP, and then the three layers ANN-BP discrimination model was built. The 15 unknown prediction samples were analyzed by the ANN-BP model. The result showed that the distinguishing rate was 100~ it was realized to discriminate different brands of Cola rapidly and exactly.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642