合适的测试的古典摆平 chi 的美德假设班的数字被修理,同时,测试统计数值在空假设下面有限制 chi 平方分布。在测试与样品尺寸变化的班的数字依附越来越多的注意,是众所周知的。处于这种状况,然而,如此的摆平 chi 的测试统计数值的 asymptotic 性质没有理论结果。这份报纸与在一些条件下面改变班的数字证明摆平 chi 的测试的一致性。同时,作者也给在测试统计数值和相应 chi 平方之间的 Kolmogorov-Simirnov 距离的集中率分布式的随机的变量。另外,一个真实例子和模拟结果与改变班的数字验证理论结果的 reasonability 和摆平 chi 的测试的优势。
The classical chi-squared goodness of fit test assumes the number of classes is fixed, meanwhile the test statistic has a limiting chi-square distribution under the null hypothesis. It is well known that the number of classes varying with sample size in the test has attached more and more attention. However, in this situation, there is not theoretical results for the asymptotic property of such chi-squared test statistic. This paper proves the consistency of chi-squared test with varying number of classes under some conditions. Meanwhile, the authors also give a convergence rate of Kolmogorov- Simirnov distance between the test statistic and corresponding chi-square distributed random variable. In addition, a real example and simulation results validate the reasonability of theoretical result and the superiority of chi-squared test with varying number of classes.