通过引入权函数的方法,得到了一个带最佳值c(λ)的Hilbert型积分不等式∫0∫∞0∞xλ+ayrλct+anm(axxy{)xαλ,yλ}f(x)g(y)dxdy〈c(λ){∫0∞x-1+p(22-λ)fp(x)dx}1/p∫{0∞x-1+q(22-λ)gq(x)dx}1/q及其等价形式.
By introducing the weight function,we obtain a new Hilbert-type integral inequality ∫∞0∫∞0arctan(yx)αxλ+yλ+max{xλ,yλ}f(x)g(y)dxdyc(λ){∫∞0x-1+p(2-λ)2fp(x)dx}1/p{∫∞0x-1+q(2-λ)2gq(x)dx}1/qand the equivalent form with a best constant factor c(λ).