位置:成果数据库 > 期刊 > 期刊详情页
基于D—S证据理论的多发性硬化症病灶分割算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南方医科大学生物医学工程学院,广州510515, [2]黄河水利委员会信息中心,郑州450004
  • 相关基金:基金项目:国家“973”重点基础研究发展规划资助项目(2010CB732500)
中文摘要:

多发性硬化症是一种严重威胁中枢神经功能的疾病,对其病灶自动检测方法的研究正受到越来越多的关注。基于D-S证据理论和模糊C-均值(FCM)聚类算法,提出了一种融合正和疋加权MR图像信息的多发性硬化症自动分割算法。首先运用FCM聚类算法分别分割T1和T2加权MR图像,然后利用根据D—S证据理论得到的融合两种加权图像信息的基本概率分配函数,实现多发性硬化症病灶的分割。通过对多发性硬化症MR脑部图像的分割实验表明,该算法具有很高的多发性硬化症病灶分割精度,对多发性硬化症的临床辅助诊断具有重要作用。

英文摘要:

Multiple sclerosis (MS) is an inflammatory demyelinating disease that would damage central nervous system. There was a growing attention to the segmentation algorithms of MS lesions. This paper developed an automatic algorithm for MS le- sions segmentation by utilizing the fusion T1 and T2-weighted MR brain images based on D-S evidence theory and FCM clustering algorithm. First, segmented T1 and T2 -weighted MR brain images by a FCM clustering algorithm. Then fused the resultant images according to the joint mass of T1 and T2-weighted MR brain images to produce the segmentation of MS lesions. The tes- ting experiments on MR brain images show that the proposed algorithm is able to improve the segmentation accuracy, which is important to assist the diagnosis of MS in clinic.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049