设G=(V,E)是一个连通图.如果λ3(G)=ξ3(G),则G是λ3-最优或者极大3-限制性边连通的,其中ξ3(G)=min{|[X,Y]|:XV,|X|=3,G[X]连通}.G的逆度是指R(G)=∑v∈V1/d(v).本文主要研究R(G)与顶点数n,最小度δ及ξ3的关系,并由此得到一函数,用这一函数来限制R(G),使G是λ3-最优的.
Let G=(V,E) be a connected graph.A graph G is called λ3-optimal,if λ3(G),where ξ3(G)=min{||:XV,|X|=3,G[X] is connected}.In this paper,we study the relation between R(G) and vertex number n,minimum degree δ,ξ3,and obtain a function.If R(G) is not more than the function,then G is λ3-optimal.