设图G=(V,E)是简单图,其中V是顶点集,E是边集.对G中任意顶点v∈V,dv表示点v的度数.图G的Randie指数也称为图G的连通性指数,定义为R=R(G)=∑Nv∈E 1/√dndv关于连通图的Randic指数R与直径D有如下猜想:R-D≥√2-n+1/2且R/D≥1/2+√2-1/n-1,两个等式都成立当且仅当G≌Pn.本文将简化该猜想,并进一步证明当D≤[2(n-1)3/2/n-3+2√2]或D≤n-3时,猜想成立
Let G=(V,E) be a simple graph, where V is the vertex set, E is the edge set. The Randic index is defined as: R = R(G) R=R(G)=∑Nv∈E 1/√dndv A conjecture about the Randic index R and the diameter D of a connected graph is as follows:R-D≥√2-n+1/2 and R/D≥1/2+√2-1/n-1 , with equalities if and only if G is the path. In this paper, it is proved that this conjecture is true for all connected graphs withD≤[2(n-1)3/2/n-3+2√2] or D≤n-3