为基于一个多步时间 discretization 计划解决多维的向后的随机的微分方程(BSDE ) 的一个稀少格子的方法[31 ] 被介绍。在多维的空间域,即 Brownian 空间,从原来的方程导出的有条件的数学期望用稀少格子的 Gauss-Hermite 照统治被接近并且(适应) 层次稀少格子的插值。错误估计与简化发电机功能的某些类型为多维的 BSDE 为建议充分分离的计划被证明。最后,几个数字例子被提供说明我们的计划的精确性和效率。[从作者抽象]
A sparse-grid method for solving multi-dimensional backward stochastic differential equations (BSDEs) based on a multi-step time discretization scheme [31] is presented. In the multi-dimensional spatial domain, i.e. the Brownian space, the conditional mathe- matical expectations derived from the original equation are approximated using sparse-grid Gauss-Hermite quadrature rule and (adaptive) hierarchical sparse-grid interpolation. Error estimates are proved for the proposed fully-discrete scheme for multi-dimensional BSDEs with certain types of simplified generator functions. Finally, several numerical examples are provided to illustrate the accuracy and efficiency of our scheme.