位置:成果数据库 > 期刊 > 期刊详情页
基于改进的隐马尔科夫模型的词性标注方法
  • ISSN号:1672-7207
  • 期刊名称:《中南大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.1[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江西财经大学信息学院数据与知识工程江西省重点实验室,江西南昌330013
  • 相关基金:国家自然科学基金资助项目(60763001); 江西省自然科学基金资助项目(2010GZS0072); 江西省教育厅科技项目(GJJ12271)
作者: 袁里驰[1]
中文摘要:

针对隐马尔可夫(HMM)词性标注模型状态输出独立同分布等与语言实际特性不够协调的假设,对隐马尔可夫模型进行改进,引入马尔可夫族模型。,该模型用条件独立性假设取代HMM模型的独立性假设。将马尔可夫族模型应用于词性标注,并结合句法分析进行词性标注。用改进的隐马尔可夫模型进行词性标注实验。实验结果表明:与条件独立性假设相比,独立性假设是过强假设,因而基于马尔可夫族模型的语言模型更符合语言等实际物理过程;在相同的测试条件下,马尔可夫族模型明显好于隐马尔可夫模型,词性标注准确率从94.642%提高到97.126%。

英文摘要:

In order to defy the unrealistic assumption of the part-of-speech tagging method based on hidden Markov models that successive observations are independent and identically distributed within a state, Markov family model (MFM) was introduced. Independence assumption in HMM was placed by conditional independence assumption in MFM Markov Family model was applied to part-of-speech tagging, and syntactic parsing was combined with part-of-speech tagging. The part-of-speech tagging experiments show that Markov family models (MFMs) have higher performance than hidden. From the view of the statistics, the assumption of independence is stronger than the assumption of conditional independence, so language model based on MFM is more realistic than HMM language mode. Markov models (HMMs) under the same testing conditions, the precision is enhanced from 94.642% to 97.126%.

同期刊论文项目
期刊论文 33 会议论文 14 获奖 2 著作 1
同项目期刊论文
期刊信息
  • 《中南大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:中南大学
  • 主编:黄伯云
  • 地址:湖南长沙中南大学校本部
  • 邮编:410083
  • 邮箱:zngdxb@csu.edu.cn
  • 电话:0731-88879765
  • 国际标准刊号:ISSN:1672-7207
  • 国内统一刊号:ISSN:43-1426/N
  • 邮发代号:42-19
  • 获奖情况:
  • 首届全国优秀科技期刊评比一等奖,第二届全国优秀科技期刊评比一等奖,首届中国有色金属工业优秀科技期刊评比一等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:20874