这篇论文在一个多面的锥上处理概括线性补充问题(GLCP ) 。解决这个问题,我们相等地首先在一个关上的多面的锥上把这个问题变换成一个仿射的变化不平等问题,然后建议解决基于错误界限评价的 GLCP 的方法的一种新类型。全球、 R 线性的集中率被建立。数字实验显示出方法的效率。
This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over a closed polyhedral cone, and then propose a new type of method to solve the GLCP based on the error bound estimation. The global and R-linear convergence rate is established. The numerical experiments show the efficiency of the method.