针对航拍高光谱图像中未知背景地物特征条件下小目标的检测问题,给出一种检测算法。利用目标的低概率特性,通过模糊聚类获取高光谱图像中背景的光谱特性;然后将高光谱数据向背景光谱信号的正交子空间及目标信号子空间投影以抑制背景和噪声信号;最后在特征层利用广义似然比检验构造出具有恒虚警特性的检测器,完成融合检测过程。理论分析和实验结果表明了算法的有效性。
A detection algorithm is presented to detect the targets in unkown background in aerial hyperspectral imagery. Spectral signatures of background endmembers can be obtained by fuzzy clustering because of targets' low probabilities. Then, in order to suppress the background spectral signature and noise, the hyperspectral data cube are projected onto the orthogonal subspaee of background spectral signatures and targets spectral signatures subspaee. Finally, a constant false alarm rate (CFAR) detector is constructed by means of generalized likelihood ratio test (GLRT). Theoretic analysis and experimental results verify the effectiveness of the algorithm.