位置:成果数据库 > 期刊 > 期刊详情页
一种非线性降维算法在组合预测模型中的应用
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华东理工大学信息科学与工程学院,上海200237, [2]河北省石家庄职工大学,石家庄050041
  • 相关基金:国家自然科学基金资助项目(61074041); 上海市教委科技创新重点资助项目(09ZZ60); 上海市重点学科资助项目(B504)
中文摘要:

针对视频序列维数高、帧间相关性大、运动轨迹复杂的特点,将LLE非线性降维算法用于视频处理,并重点研究了如何利用该算法对目标跟踪过程中的模板进行预测更新。由于单步预测方法在运动目标发生部分或全部遮挡时无法保证跟踪的准确性,进一步将时间序列模型与BP网络相结合实现跟踪目标的多步预测,从而可以弥补时间序列模型在单步预测方面的不足。实验证明,该算法能保证在运动目标跟踪过程中的准确性和鲁棒性。

英文摘要:

Aiming at the features of video sequences,i.e.,the higher dimension,larger relativity of frame,and complex trajectories,this paper proposed applying the reduction algorithm of LLE nonlinear dimensionality to video processing.In particularly,this paper focused on how to utilize the above algorithm to predictively update the model of moving objective tracking.Because the single-step prediction could not guarantee the accuracy in the complex environment with part or the whole hided,this paper integrated the time series model with BP neural network to achieve multi-step prediction,which could overcome the shortcoming of time series model.The experiment results show that this proposed method can attain better accuracy and robustness for moving object tracking.

同期刊论文项目
期刊论文 38 会议论文 10
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049