图G的线图L( G)是指以G的边集E( G)为顶点集且L( G)的2个顶点邻接当且仅当它们在G中有公共顶点。 n次迭代线图Ln(G)递归地定义为L0(G)=G,Ln(G)=L(Ln-1(G))(n∈N={0,1,2,…}),其中L1( G)=L( G)并且假设Ln-1( G)非空,使得Ln( G)是哈密尔顿的最小整数n称为哈密尔顿指数,用h( G)表示。该文综述了(类)哈密尔顿指数的一些结果。
Let G be a simple graph. The line graph L( G)of a graph G is a graph which has E( G)as its vertex set and two vertices are adjacent in L( G)if and only if they share an end vertex in G. The n-th iterated line graph Ln(G)is defined recursively by L0(G)=G,Ln(G)=L(Ln-1(G))(n∈N={0,1,2,…}),where L1(G)=L(G) and Ln-1( G)is assumed to be nonempty. The hamiltonian index of a graph G,denoted by h( G),is the smallest in-teger n such that Ln(G)is hamiltonian. The results of hamiltonian(like)indices of graphs have been summariczed.