欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
A relaxation of the Bordeaux Conjecture
ISSN号:0195-6698
期刊名称:European Journal of Combinatorics
时间:2015.10
页码:240-249
相关项目:群连通度和子图存在性及相关问题的研究
作者:
Liu, Runrun|Li, Xiangwen|Yu, Gexin|
同期刊论文项目
群连通度和子图存在性及相关问题的研究
期刊论文 42
同项目期刊论文
Nowhere-zero 3-flows and $Z_3$-connectivity in bipartite graphs
Group connectivity in 3-edge-connected graphs
Degree condition and $Z_3$-connectivity
The L(2,1)-labelling problem for cubic Cayley graphs on dihedral groups
Group Connectivity of Bridged Graphs
Labeling outerplanar graphs with maximum degree three
Maximum Degree Condition and Group Connectivity
Group connectivity of semistrong product of graphs
Degree sum of 3 independent vertices and Z(3)-connectivity
Spanning Eulerian Subgraphs of 2-Edge-Connected Graphs
Induced hourglass and the equivalence between hamiltonicity and supereulerianity in claw-free graphs
Hamiltonian claw-free graphs with locally disconnected vertices
Realizing degree sequences as Z(3)-connected graphs
Nowhere-zero 3-flows of claw-free graphs
A note on Z(5)-connectivity in 3-edge-connected graphs
The Chvatal-Erdos Condition for Group Connectivity in Graphs
Nowhere-zero 3-flows in semistrong product of graphs
Z(3)-Connectivity of Wreath Product of Graphs
Collapsible graphs and Hamilton cycles of line graphs
Z3-connectivity with independent number 2
Nowhere-zero 3-flows in graphs admitting solvable arc-transitive groups of automorphisms
Strong chromatic index of subcubic planar multigraphs
Nowhere-zero 3-flows in Cayley graphs on generalized dihedral group and generalized quaternion group
Nowhere-zero 3-flows and $Z_3$-connectivity
Group chromatic number of Halin graphs
Z3-connectivity of K(1, 3)-free graphs without induced cycle of length at least 5
Group connectivity and matchings
Planar graphs without 5-cycles and intersecting triangles are (1, 1, 0)-colorable
On hamiltonicity of 2-connected claw-free graphs
故障折叠超立方体中的路和圈(英文)
(a,b,Ck)-临界图的一个最小度条件
关于哈密尔顿指数的综述
含故障点的加强超立方体中路和圈的嵌入
故障加强超立方体中的路和圈
加强超立方体中条件容错圈