考虑了离散时间鞅理论的2个具体应用,一是与精算学生命保险模型相结合,推导出保险公司各年内损失现值的部分和序列是鞅,进而计算出各年内损失变量的方差;另一则是利用离散时间鞅理论下的可选停时定理,通过构造鞅的方法重新解决概率论带有2个吸收壁的随机游走问题.
Two applications of discrete-time martingales are studied.One is the combination with life insurance model in actuarial sciences,which proves the expected claims of insurance company is a martingale,and then deduce the variance of expected claims.The other is to apply the Doob optional sampling theorem in the random walk with two absorbing barriers.