我们与指数的主张尺寸考虑分离风险模型。我们为三个特征的联合密度函数导出有限明确的基本表达式:毁灭的时间,剩余立即在在毁灭的毁灭,和赤字前。由使用明确的联合密度功能,我们没有红利为 Gerber-Shiu 功能给简明表情。最后,我们在障碍红利策略下面为 Gerber-Shiu 功能获得一个不可分的方程。没有红利和相应同类的不可分的方程的解决方案,解决方案能被表示为 Gerber-Shiu 函数的联合。没有红利,这后者功能借助于 Gerber-Shiu 功能清楚地被给。
We consider the discrete risk model with exponential claim sizes. We derive the finite explicit elementary expression for the joint density function of three characteristics: the time of ruin, the surplus immediately before ruin, and the deficit at ruin. By using the explicit joint density function, we give a concise expression for the Gerber-Shiu function with no dividends. FinMly, we obtain an integral equation for the Gerber-Shiu function under the barrier dividend strategy. The solution can be expressed as a combination of the Gerber-Shiu function without dividends and the solution of the corresponding homogeneous integral equation. This latter function is given clearly by means of the Gerber- Shiu function without dividends .