基于有限体积法的通量差分分裂法,通过联合高阶多态黎曼求解器(HLLD)、高精度重构格式(MUSCL)和三阶总变差递减龙格-库塔格式,数值研究了平板位形下等离子体电阻磁流体不稳定性.对托卡马克等离子体双撕裂模不稳定性和等离子体磁岛合并不稳定性的研究结果表明,该算法具有精度高、数值稳定性好和运行速度快等特点.研究结果为磁流体动力学方程组的求解提供了一种新的高精度数值计算方法.
A flux difference splitting numerical scheme based on finite volume method is applied to study the instability of resistive magnetohydrodynamics in plane geometry by combining a multi-state Harten-Lax-Van Leer approximate Riemann solver with the hyperbolic divergence cleaning technique, high order shock-capturing reconstruction schemes (MUSCL) , and a third order total variance diminishing Runge-Kutta time evolving scheme. The research result of the double tearing mode and coalescence instability indicate that the algorithm has the characteristics of high precision, good numerical stability and acceptable computational efficiency. It provides a feasible and high accurate numerical algorithm for the study of magnetic fluid dynamics.