在 2+1 尺寸的一个新非线性的部分微分方程(PDE ) 基于 Fourier 扩大借助于一个 asymptotically 准确的减小方法从 mKP 方程被获得并且时间空间重新可伸缩。以便表明新方程的 integrability 性质,相应的宽松的对被把减小技术用于 mKP 方程的宽松的对获得。
A new nonlinear partial differential equation (PDE) in 2+1 dimensions is obtained from the mKP equation by means of an asymptotically exact reduction method based on Fourier expansion and spatio-temporal resealing. In order to demonstrate integrability property of the new equation, the corresponding Lax pair is obtained by applying the reduction technique to the Lax pair of the mKP equation.