令G是一Abel群,m≥2是一整数.一个型为(G,m)的Moore空间是一单连通的CW-复形X,使得Hi(X)=G(i=m),0(i≠m).这里Hi为X的第i个整系数的约化同调群.众所周知,Moore空间存在,且任何两个型为(G,n)的Moore空间有相同伦型.取G=Zk(模k的剩余类加群).p^n(k)=S^n-1∪kln-1e^n为型为(Zk,n-1)的Moore空间.特别地,考虑k=8,决定了Moore空间p^n(8)的一些同伦群.主要证明工具是Toda引进的复合工具-Toda积,Gray的关于从p^n(8)到n维球面S~n的pinchin映射的同伦纤维的胞腔结构,以及关于亚稳定相对同伦群πk(X,A)的同伦切割定理,其中A为维数小于n-1的有限CW-复形,X=A∪e^n.
Let G be an Abelian group and m an integer m ≥ 2. A Moore space of type (G,m) is a 1-connected CW-complex X such that H^-i(X) = G for i = m, and 0 for others. HereH^-i denotes the i-th reduced homology groups. It is well known that Moore spaces exist and that any two of type (G, n) have the same homotopy type. This paper fixes G = Zk, the integers mod k and let P^n(k) = S^n-1 Ukln-1 e^n be a Moore space of type (Zk,n - 1). In particular, the author considers the case k = 8 and calculate some homotopy groups of the Moore space P^n(8). The methods are based upon the composition methods developed by Toda. And uses Gray's cellar structure of the homotopy fibre of the pinching map from P^n(8) to an n-sphere S^n and also uses the homotopy excision theorem about the metastable relative homotopy groups πk (X, A), where A is a finite CW-complex of dimension less than n-1 andX=A∪e^n.