位置:成果数据库 > 期刊 > 期刊详情页
纹理特征对松林郁闭度的判别能力研究
  • ISSN号:1000-2286
  • 期刊名称:《江西农业大学学报》
  • 时间:0
  • 分类:S771.8[农业科学—森林工程;农业科学—林学] TP753[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]福州大学环境与资源学院,福建福州350116, [2]福建省水土流失遥感监测评估与灾害防治重点实验室,福建福州350116, [3]福建农林大学3S技术应用研究所,福建福州350002, [4]福建省三明学院,福建三明365000
  • 相关基金:国家自然科学基金项目(30871965); 福建省科技计划重点项目(2011N0031); 福州大学人才基金项目(XRC-1345)
中文摘要:

郁闭度具有获取便捷的特点,是森林资源调查的基本因子之一,也是检测森林状态、检验营林效果的重要指标,并已成为许多重要特征遥感反演的基础数据。另一方面,纹理特征成为遥感信息挖掘的重要方向,并被用于判别单纯依靠光谱特征无法有效识别的信息,但纹理的应用范围与可行性仍缺乏验证。以福建省三明市、将乐县、沙县、延平区4县(市、区)HJ-1 CCD多光谱数据及实测松林郁闭度为主要数据,基于灰度共生矩阵法提取均值、方差、协同性、对比度、相异性、熵、角二阶矩及相关性等8类纹理特征(共计32个),利用单因素方差分析法筛选24个对松林郁闭度变化有所响应的纹理,并分别以单个、单类纹理特征及多纹理特征联合为自变量,建立极弱度郁闭林、弱度郁闭林与中度郁闭林的Fisher判别函数。结果表明,单个纹理特征对松林郁闭度的判别能力普遍较差,仅COR_2、COR_4、CON_1、CON_2判别精度高于50%;单类纹理特征对郁闭度的判别能力有所提高,均值、方差、对比度的判别精度高于50%,而相关性的判别精度可达62.7%;多纹理特征联合对松林郁闭度有更高的判别能力,精度达74.6%。由此证明,纹理具备郁闭度的响应能力,在其他特征的遥感反演过程中可以应用,但需要深入挖掘其相关性与响应机制。

英文摘要:

Canopy density,which can be easily obtained,is one of the basic factors in forest resources survey,and also an important factor in forest state detection and forest management effect test,and has become a basic datum in remote sensing retrieval of many features.On the other hand,texture has become the significant direction of remote sensing data probing,but the application scope and feasibility of texture are still to be verified.Taking HJ-1 CCD multi-spectral image and measured pine forest canopy density materials in four counties( cities,districts) of Sanming,Jiangle,Shaxian and Yanping of Fujian Province as the main data,eight classes of textual features( total 32) such as mean,variance,homogeneity,contrast,dissimilarity,entropy,second moment,correlation were extracted with GLCM,24 textures affecting changes in canopy density were screened with ANOVA,and Fisher discriminant functions of very-weak canopy forest,weak canopy forest and moderate canopy forest independent variables respectively as single texture,single class textures,combination of multiple textures were constructed.The results showed that the discriminant abilities of single textual features on pine forests canopy density were generally poor,only the accuracies of COR_2,COR_4,CON_1,CON_2 were above 50%; the discriminant accuracies of single class textures increased,the accuracies of mean,variance,contrast were above 50%,the correlation reached 62. 7%; the combination of multiple textures had higher discriminant ability on pine forests canopy density with an accuracy up to 74. 6%. Therefore,texture has response ability to canopy density,and can be used in remote sensing retrieval of other features,but the relationships and response mechanisms should be deeply probed.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《江西农业大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:江西农业大学
  • 主办单位:江西农业大学
  • 主编:石庆华
  • 地址:江西省南昌市经开区志敏大道1101号江西农业大学期刊社
  • 邮编:330045
  • 邮箱:ndxb7775@sina.com
  • 电话:0791-83813246 83828010
  • 国际标准刊号:ISSN:1000-2286
  • 国内统一刊号:ISSN:36-1028/S
  • 邮发代号:44-102
  • 获奖情况:
  • 中国期刊方阵双百期刊,国家期刊奖百种重点期刊,中国高校精品科技期刊,华东地区优秀期刊,江西省"名刊建设工程"期刊,江西省优秀期刊一等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,美国剑桥科学文摘,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:20807