位置:成果数据库 > 期刊 > 期刊详情页
Lattice-Boltzmann simulation rock subject to force-induced of microscale CH4 flOW in porous deformation
  • ISSN号:2095-9389
  • 期刊名称:《工程科学学报》
  • 时间:0
  • 分类:P421[天文地球—大气科学及气象学] U491.112[交通运输工程—交通运输规划与管理;交通运输工程—道路与铁道工程]
  • 作者机构:[1]State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology,Xuzhou 221116, China, [2]State Key Laboratory of Coal Resources and Safe Mining, ChinaUniversity of Mining and Technology at Beijing, Beijing100083, China, [3]School of Mechanics and Civil Engineering, China University ofMining and Technology at Beijing, Beijing 100083, China, [4]College of Hydraulic and Hydroelectric Engineering, SichuanUniversity, Chengdu 610065, China
  • 相关基金:This work was supported by the National Natural Science Foundation for Distinguished Young Scholars of China (51125017), the National Natural Science Foundation of China (51374213), and the National Basic Research Program of China (2010CB226804, 2011CB201201).
中文摘要:

Accurate knowledge of the influence of rock deformation on the permeability of fluid flow is of great significance to a variety of engineering applications, such as simultaneous extraction of coal and gas, oil/gas exploitation, CO2 geological sequestration, and underground water conservation. Based on the CT representation of pore structures of sandstones, a LBM(Lattice Boltzmann Method) for simulating CH4 flow in pore spaces at microscale levels and a parallel LBM algorithm for largesize porous models are developed in this paper. The properties of CH4 flow in porous sandstones and the effects of pore structure are investigated using LBM. The simulation is validated by comparing the results with the measured data. In addition, we incorporate LBM and FEM to probe the deformation of microstructures due to applied triaxial forces and its influence on the properties of CH4 flow. It is shown that the proposed method is capable of visually and quantitatively describing the characteristics of microstructure, spatial distribution of flow velocity of CH4,permeability, and the influences of deformation of pore spaces on these quantities as well. It is shown that there is a good consistency between LBM simulation and experimental measurement in terms of the permeability of sandstone with various porosities.

英文摘要:

Accurate knowledge of the influence of rock deformation on the permeability of fluid flow is of great significance to a variety of engineering applications, such as simultaneous extraction of coal and gas, oil/gas exploitation, CO2 geological sequestration, and under- ground water conservation. Based on the CT representation of pore structures of sandstones, a LBM (Lattice Boltz- mann Method) for simulating CH4 flOW in pore spaces at microscale levels and a parallel LBM algorithm for large- size porous models are developed in this paper. The properties of CH4 flow in porous sandstones and the effects of pore structure are investigated using LBM. The simu- lation is validated by comparing the results with the mea- sured data. In addition, we incorporate LBM and FEM to probe the deformation of microstructures due to applied triaxial forces and its influence on the properties of CH4 flow. It is shown that the proposed method is capable of visually and quantitatively describing the characteristics of microstructure, spatial distribution of flow velocity of CH4,permeability, and the influences of deformation of pore spaces on these quantities as well. It is shown that there is a good consistency between LBM simulation and experi- mental measurement in terms of the permeability of sandstone with various porosities.

同期刊论文项目
期刊论文 44 会议论文 8 获奖 4 著作 1
同项目期刊论文
期刊信息
  • 《工程科学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:北京科技大学
  • 主编:张欣欣
  • 地址:北京市海淀区学院路30号
  • 邮编:100083
  • 邮箱:xuebaozr@ustb.edu.cn
  • 电话:010-62332875
  • 国际标准刊号:ISSN:2095-9389
  • 国内统一刊号:ISSN:10-1297/TF
  • 邮发代号:82-303
  • 获奖情况:
  • 首届国家期刊奖,第二届全国优秀科技期刊评比一等奖,全国高等学校自然科学学报系统优秀学报评比一等奖,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:392