位置:成果数据库 > 期刊 > 期刊详情页
基于UKF算法的汽车状态估计
  • 期刊名称:中国机械工程
  • 时间:0
  • 页码:615-619
  • 分类:U461.6[机械工程—车辆工程;交通运输工程—载运工具运用工程;交通运输工程—道路与铁道工程]
  • 作者机构:[1]南京航空航天大学,南京210016
  • 相关基金:国家自然科学基金资助项目(10902049); 国家863高技术研究发展计划资助项目(2008AA11A140)
  • 相关项目:行驶汽车中若干关键状态和参数估计研究
作者: 赵又群|林棻|
中文摘要:

准确实时获取行驶过程中的状态信息是汽车动态控制系统研究的关键问题。将unscented卡尔曼滤波(UKF)算法应用到汽车的状态估计之中,建立了包含时不变统计特性噪声和非线性轮胎的汽车动力学模型,采用具有对称采样策略和比例修正的UKF算法对汽车估计了多个关键状态量。将UKF估计器与常见的EKF估计器进行了比较分析,基于ADAMS/Car的虚拟试验和实车试验验证了UKF在汽车状态估计中的可行性。

英文摘要:

A critical component of vehicle dynamic control systems is as accurate and real time knowledge of vehicle key states when running on road.UKF algorithm was used in vehicle state estimation.The nonlinear vehicle dynamics system which contained constant noise and nonlinear tire model was established.Several vehicle key states were estimated using UKF with symmetrical sampling strategy and proportional correction.The estimator based on UKF is compared with the estimator based on extended Kalman filter (EKF).The results of virtual experiments based on ADAMS/Car and real vehicle experiments demonstrate that UKF is available in vehicle state estimation.

同期刊论文项目
同项目期刊论文