液滴在受热基底上的铺展特征将直接影响其传热特性.基于润滑理论建立了单液滴在受热基底上的演化模型,模拟了壁温均匀和自中心向两侧呈指数规律衰减两种情形下液滴的铺展历程,提出了一种针对二维液滴表面热流密度和传热量的计算方法,借助该方法分析了液滴铺展特征及外部对流换热条件对传热特性的影响,所得结果与已有文献有较好的一致性.结果表明:当壁温均匀时,液滴在重力驱动下呈现具有"单峰"结构的对称铺展特征,表面热流密度由两侧向中心递减;液滴表面积随时间小幅增大,传热能力有所增强.当壁温自中心向两侧呈指数规律衰减时,液滴铺展明显呈现三个阶段特征,厚度剖面由"单峰"结构渐变为"双峰"结构,且"双峰"峰值随时间先增大后减小,该变化源于重力和热毛细力的复杂博弈及在演化过程中的交替主导地位;液滴中心处热流密度不断增大,"双峰"处热流密度则持续减小;接触线处热流密度相比邻近有一明显跃升;液滴表面积随时间显著增大,传热能力有效提高.增强外部对流换热条件虽将减缓液滴铺展过程,抑制其表面积增大,但总体上有利于提高其传热能力,且随时间增长,该现象愈加显著;增大毕渥数使液滴动态接触角及接触线移动速率的变化发生延迟,但并不改变其总体特征.
The spreading characteristics of a droplet on a heated substrate have direct influences on its spreading area and heat transfer, so the exploration in this aspect is of important significance for cooling electronic and aerospace equipments. In the present paper, the evolution model of a droplet on a heated solid substrate is established based on the lubrication theory, and spreading processes are simulated respectively when the wall temperature is uniform and decreases exponentially from the center to both sides. A method of assessing the heat flux and heat transfer capacity of a two-dimensional liquid droplet is proposed. Influences of spreading characteristics and heat convective condition at the liquid-gas interface on heat transfer feature of the droplet are examined, and the results are in good agreement with the published ones in the literature. The simulated results show that in the case of uniform wall temperature, the evolution of the droplet is dominated mainly by gravity and illustrates symmetrical spreading characteristics, and the thickness profile presents a single-peak feature of which the value diminishes with time. The heat flux across the droplet surface decreases from both sides to the center, and the surface area of the droplet increases with time slightly, so the performance of heat transfer is strengthened to a certain extent. When the wall temperature decreases exponentially from the center to both sides, the spreading process of the droplet manifests three obvious stages, in which a single-peak feature of thickness profile gradually evolutes into a double-peak feature after surviving for a short period of time, and the peak values of the double-peak first increase firstly and then decrease, resulting from the complex game of gravity and thermocapillary force and their alternative dominance in the evolution. The variations of the dynamic contact angle and travelling speed of the contact line with time can also reflect the above characteristics. The heat flux in the center of the droplet inc