针对含不溶性活性剂的垂直液膜排液过程,基于文献实验结果进一步完善了受活性剂浓度影响的分离压(disjoining pressure)模型,应用润滑理论建立了液膜厚度、活性剂浓度和液膜表面速度的演化方程组,通过数值计算分析了在不同分离压作用下含不溶性活性剂液膜的演化特征.结果表明,垂直液膜的排液过程通常经历两个阶段:首先是厚膜阶段,此时重力对排液过程起主导作用.在随后的薄膜阶段,毛细作用和分离压作用影响逐渐增大,其中分离压将控制液膜的演化历程.分离压对垂直液膜排液过程的影响与活性剂类型及活性剂浓度与静电作用力的关联强度密切相关.当分离压与活性剂浓度正相关时,随斥力关联系数α增大,液膜的排液和变薄过程得以减缓,由此增强了液膜稳定性;当分离压与活性剂浓度负相关时,随斥力关联系数α绝对值增大,液膜排液过程加速,由此加大液膜失稳的风险.
For the drainage under the gravity of a vertical foam film containing insoluble surfactant, an improved concentrationdependent disjoining pressure model is formulated based on the published experimental results. The lubrication theory is used to establish the evolution equations of the film thickness, the surface concentration of insoluble surfactant,and the surface velocity, and the evolution characteristics of the film under different disjoining pressures are simulated numerically. The results show that the drainage process of a vertical liquid film generally undergoes two stages: the first stage is the thick film stage and the gravity plays a leading role in the drainage process; the subsequent stage is the thin film stage, the effects of capillary pressure and disjoining pressure increase gradually, and the disjoining pressure dominates the evolution of the film. The disjoining pressure effect is closely related to surfactant type and the correlation strength between the surfactant concentration and electrostatic repulsion force of disjoining pressure. For the ionic surfactant, electrostatic repulsion force increases with the increase of the surfactant concentration, but it is opposite for the nonionic surfactant. It is likely that the free hydroxide ions, which are considered to render the surface negatively charged, are partly adsorbed by the nonionic surfactant. So the surface charge of the foam film decreases as the concentration of the nonionic surfactant increases, resulting in a decrease in electrostatic repulsion. Therefore,some ionic surfactants can improve the stability of liquid film drainage and slow down the drainage process, while the effects of some nonionic surfactants are opposite. When the disjoining pressure is positively correlated with surfactant concentration, with the increase of correlation strength coefficient α, the thinning and drainaging processes of the film tend to slow down, hence the stability of the film is enhanced. When the disjoining pressure is negatively correlated wit