位置:成果数据库 > 期刊 > 期刊详情页
广义的势支撑特征选择方法GPSFM
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江南大学信息工程学院,江苏无锡214122, [2]盐城工学院信息工程学院,江苏盐城224001, [3]浙江大学CAD&CG国家重点实验室,杭州310027
  • 相关基金:国家“八六三”高技术研究发展计划基金项目(2007AA1Z158,2006AA102313);国家自然科学基金项目(60704047);2007年教育部高等学校创新工程重大培育项目;浙江大学CAD&CG国家重点实验室开放课题(A0802);国防应用基础研究基金项目(A1420461266)
中文摘要:

势支撑向量机P-SVM(potential support vector machine)作为一种新颖的封装型特征选择方法在许多领域得到了成功的运用,然而依据Fisher准则的基本原理发现势支撑向量机方法对应的目标函数只是类内离散度各类均值为0的一种特殊形式,从而使该方法的运用受到一定的限制.同时由于要求各类样本均值为0,一定程度上会导致在0矢量周围出现样本交叉,从而不利于P-SVM方法得到最优决策超平面,降低分类效果.因此利用一般的类内散度重新构造目标函数,提出一种广义的势支撑特征选择方法GPSFM(generalized potential support features selection method).GPSFM方法在一定程度上继承了P-SVM的优点,而且还具有特征选择冗余度低、选择速度快和适应能力强的特点,从而使得该方法表现出较之于P-SVM更好的特征选择和分类效果.实验结果表明该方法具有上述优势.

英文摘要:

Feature selection is one of the fundamental problems in machine learning. Not only can its proper design reduce system complexity and processing time, but it can also enhance system performance in many cases. It becomes even more critical to the success of a machine learning algorithm in problems involving a large amount of irrelevant features. Potential support vector machine (P-SVM), as a new wrapper feature selection approach, has been applied to several fields successfully. However, according to Fisher linear discriminant criterion, it is found that P-SVM can work only when the mean of each class is zero, which makes it difficult to get best decision boundaries for sample data and therefore lowers classification capability of P-SVM. In this paper, based on the above mentioned finding, a new criterion function with general within-class scatter is adopted and a generalized potential support features selection method (GPSFM) is proposed, which not only has the advantages of P-SVM to some extent but also has the characteristics of low redundant features selection, high selection speed, and nicer adaptive abilities. So compared with the traditional P-SVM, this new method has much stronger abilities in both feature selection and classification. Our experimental results demonstrate the above advantages of the proposed method GPSFM.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349