将欧式空间中经典的Brouwer不动点定理推广到了Heisenberg群Hn上,主要定理可叙述为:设f:BH→BH∩Hξ是光滑映射,则f在BH∩Hξ中必有不动点,其中BH为Hn中的单位闭球,Hξ是过ξ∈BH的水平平面。
In this paper,the classical Brouwer fixed point theorem in Euclidean space is generalized to the Henberg group Hn.The main result is as follows:If f:BH→BH∩Hξ is a smooth mapping,there exists a fixed point in BH∩Hξ,where Bn is a Koranyi unit closed ball,and Hξ is a horizontal plane through a point ξ∈BH.